11 research outputs found

    FedAVO: Improving Communication Efficiency in Federated Learning with African Vultures Optimizer

    Full text link
    Federated Learning (FL), a distributed machine learning technique has recently experienced tremendous growth in popularity due to its emphasis on user data privacy. However, the distributed computations of FL can result in constrained communication and drawn-out learning processes, necessitating the client-server communication cost optimization. The ratio of chosen clients and the quantity of local training passes are two hyperparameters that have a significant impact on FL performance. Due to different training preferences across various applications, it can be difficult for FL practitioners to manually select such hyperparameters. In our research paper, we introduce FedAVO, a novel FL algorithm that enhances communication effectiveness by selecting the best hyperparameters leveraging the African Vulture Optimizer (AVO). Our research demonstrates that the communication costs associated with FL operations can be substantially reduced by adopting AVO for FL hyperparameter adjustment. Through extensive evaluations of FedAVO on benchmark datasets, we show that FedAVO achieves significant improvement in terms of model accuracy and communication round, particularly with realistic cases of Non-IID datasets. Our extensive evaluation of the FedAVO algorithm identifies the optimal hyperparameters that are appropriately fitted for the benchmark datasets, eventually increasing global model accuracy by 6% in comparison to the state-of-the-art FL algorithms (such as FedAvg, FedProx, FedPSO, etc.).Comment: 19 page

    Leveraging Decentralized Artificial Intelligence to Enhance Resilience of Energy Networks

    Full text link
    This paper reintroduces the notion of resilience in the context of recent issues originated from climate change triggered events including severe hurricanes and wildfires. A recent example is PG&E's forced power outage to contain wildfire risk which led to widespread power disruption. This paper focuses on answering two questions: who is responsible for resilience? and how to quantify the monetary value of resilience? To this end, we first provide preliminary definitions of resilience for power systems. We then investigate the role of natural hazards, especially wildfire, on power system resilience. Finally, we will propose a decentralized strategy for a resilient management system using distributed storage and demand response resources. Our proposed high fidelity model provides utilities, operators, and policymakers with a clearer picture for strategic decision making and preventive decisions

    Data analytics to evaluate the impact of infectious disease on economy: Case study of COVID-19 pandemic

    Get PDF
    SARS-CoV-2 (COVID-19) is a new strain of coronavirus that is regarded as a respiratory disease and is transmittable among humans. At present, the disease has caused a pandemic, and COVID-19 cases are ballooning out of control. The impact of such turbulent situations can be controlled by tracking the patterns of infected and death cases through accurate prediction and by taking precautions accordingly. We collected worldwide COVID-19 case information and successfully predicted infected victims and possible death cases around the world and in the United States. In addition, we analyzed some leading stock market shares and successfully forecast their trends. We also scrutinized the share market price by proper reasoning and considered the state of affairs of COVID-19, including geographical dispersity. We publicly release our developed dashboard that presents statistical data of COVID-19 cases, shows predicted results, and reveals the impact of COVID19 on leading companies and different countries\u27 job markets

    A Survey on Secure and Private Federated Learning Using Blockchain: Theory and Application in Resource-constrained Computing

    Full text link
    Federated Learning (FL) has gained widespread popularity in recent years due to the fast booming of advanced machine learning and artificial intelligence along with emerging security and privacy threats. FL enables efficient model generation from local data storage of the edge devices without revealing the sensitive data to any entities. While this paradigm partly mitigates the privacy issues of users' sensitive data, the performance of the FL process can be threatened and reached a bottleneck due to the growing cyber threats and privacy violation techniques. To expedite the proliferation of FL process, the integration of blockchain for FL environments has drawn prolific attention from the people of academia and industry. Blockchain has the potential to prevent security and privacy threats with its decentralization, immutability, consensus, and transparency characteristic. However, if the blockchain mechanism requires costly computational resources, then the resource-constrained FL clients cannot be involved in the training. Considering that, this survey focuses on reviewing the challenges, solutions, and future directions for the successful deployment of blockchain in resource-constrained FL environments. We comprehensively review variant blockchain mechanisms that are suitable for FL process and discuss their trade-offs for a limited resource budget. Further, we extensively analyze the cyber threats that could be observed in a resource-constrained FL environment, and how blockchain can play a key role to block those cyber attacks. To this end, we highlight some potential solutions towards the coupling of blockchain and federated learning that can offer high levels of reliability, data privacy, and distributed computing performance

    A Novel Scalable Reconfiguration Model for the Postdisaster Network Connectivity of Resilient Power Distribution Systems

    Get PDF
    The resilient operation of power distribution networks requires efficient optimization models to enable situational awareness. One of the pivotal tools to enhance resilience is a network reconfiguration to ensure secure and reliable energy delivery while minimizing the number of disconnected loads in outage conditions. Power outages are caused by natural hazards, e.g., hurricanes, or system malfunction, e.g., line failure due to aging. In this paper, we first propose a distribution-network optimal power flow formulation (DOPF) and define a new resilience evaluation indicator, the demand satisfaction rate (DSR). DSR is the rate of satisfied load demand in the reconfigured network over the load demand satisfied in the DOPF. Then, we propose a novel model to efficiently find the optimal network reconfiguration by deploying sectionalizing switches during line outages that maximize resilience indicators. Moreover, we analyze a multiobjective scenario to maximize the DSR and minimize the number of utilized sectionalizing switches, which provides an efficient reconfiguration model preventing additional costs associated with closing unutilized sectionalizing switches. We tested our model on a virtually generated 33-bus distribution network and a real 234-bus power distribution network, demonstrating how using the sectionalizing switches can increase power accessibility in outage conditions

    Applications of Nature-Inspired Algorithms for Dimension Reduction: Enabling Efficient Data Analytics

    Get PDF
    In [1], we have explored the theoretical aspects of feature selection and evolutionary algorithms. In this chapter, we focus on optimization algorithms for enhancing data analytic process, i.e., we propose to explore applications of nature-inspired algorithms in data science. Feature selection optimization is a hybrid approach leveraging feature selection techniques and evolutionary algorithms process to optimize the selected features. Prior works solve this problem iteratively to converge to an optimal feature subset. Feature selection optimization is a non-specific domain approach. Data scientists mainly attempt to find an advanced way to analyze data n with high computational efficiency and low time complexity, leading to efficient data analytics. Thus, by increasing generated/measured/sensed data from various sources, analysis, manipulation and illustration of data grow exponentially. Due to the large scale data sets, Curse of dimensionality (CoD) is one of the NP-hard problems in data science. Hence, several efforts have been focused on leveraging evolutionary algorithms (EAs) to address the complex issues in large scale data analytics problems. Dimension reduction, together with EAs, lends itself to solve CoD and solve complex problems, in terms of time complexity, efficiently. In this chapter, we first provide a brief overview of previous studies that focused on solving CoD using feature extraction optimization process. We then discuss practical examples of research studies are successfully tackled some application domains, such as image processing, sentiment analysis, network traffics / anomalies analysis, credit score analysis and other benchmark functions/data sets analysis

    Evolutionary Computation, Optimization and Learning Algorithms for Data Science

    Get PDF
    A large number of engineering, science and computational problems have yet to be solved in a computationally efficient way. One of the emerging challenges is how evolving technologies grow towards autonomy and intelligent decision making. This leads to collection of large amounts of data from various sensing and measurement technologies, e.g., cameras, smart phones, health sensors, smart electricity meters, and environment sensors. Hence, it is imperative to develop efficient algorithms for generation, analysis, classification, and illustration of data. Meanwhile, data is structured purposefully through different representations, such as large-scale networks and graphs. We focus on data science as a crucial area, specifically focusing on a curse of dimensionality (CoD) which is due to the large amount of generated/sensed/collected data. This motivates researchers to think about optimization and to apply nature-inspired algorithms, such as evolutionary algorithms (EAs) to solve optimization problems. Although these algorithms look un-deterministic, they are robust enough to reach an optimal solution. Researchers do not adopt evolutionary algorithms unless they face a problem which is suffering from placement in local optimal solution, rather than global optimal solution. In this chapter, we first develop a clear and formal definition of the CoD problem, next we focus on feature extraction techniques and categories, then we provide a general overview of meta-heuristic algorithms, its terminology, and desirable properties of evolutionary algorithms

    Distributed Machine Learning Algorithms for Resource-Constrained Heterogeneous Internet-of-Things Environments

    No full text
    With the improvement of network infrastructures and advancement of IoT technologies, now it is desirable to perform computation at the edges, rather than sharing data with a central fusion center, which is privacy-intrusive. Both conventional (centralized) and distributed machine learning (ML) algorithms fail to address underlying challenges related to users’ privacy or capturing global knowledge of the whole network. To properly handle such challenges, a recently invented distributed ML technique, called Federated Learning was invented that shows us a pathway to construct a global model without exposing any user’s private data through on-device model training utilizing edge resources. However, FL may face various challenges due to the lack of a convenient mechanism to prepare a federated dataset, and also the heterogeneous nature of the resource-constrained agents such as systems, statistical and model heterogeneity. We developed a distributed sensing mechanism through which any federated agents can be triggered and activated for sensing the environment. That novel approach shows a pathway to carry out the FL process in a real-world environment. Following this, we developed an FL model, FedAR by monitoring agent activities and leveraging available local computing resources, particularly for resource-constrained IoT devices (e.g., mobile robots), to accelerate the learning process. Besides, we propose a tri-layer FL framework, FedPARL that helps resource-constrained FL agents consume less resources during training, and avoid untrustworthy and out-of-resource agents (e.g., low battery life) during agent selection for training and perform variable local epochs based on the agent’s resource availability. We perform model pruning to reduce the size of the agent model that is effective for an FL-IoT setting. Afterwards, we proposed a coupling of distillation and dynamic local task allocation technique through which we can effectively handle model and systems heterogeneity of FL-IoT environments. Further, we focused on applying our developed distributed ML algorithm to improve the resilience of critical infrastructures through knowledge exchange. We extended the work by proposing a novel technique, FedResilience, to handle weak critical infrastructure agents by enabling partial computational tasks from the resource-constrained agents and exchanging information without sharing any raw data. Besides, we implemented two other FL applications to recognize human activities and forecast customers’ financial distress in resource-constrained environments. From the experience we gathered over the past few years on FL, we conducted a comprehensive survey on FL, particularly for resource-constrained IoT environments that discussed the existing FL works, present challenges, and their potential solutions, applications, and future research directions in this domain
    corecore